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Change-point problem

Change-point problems have been of interest to statisticians for many decades.

Detection of change-points in mean, variance, regression coefficients, second-
order structure and distribution in general, in univariate, multivariate or high-
dimensional data, in both a posteriori (retrospective) and sequential manner.

We are concerned with the classical, a posteriori multiple change-point detection
problem in univariate data:

an
Xe=> fi Wk +1<t<kj)+e, t=1,...,n.
j=0

k0+1:1§k1<k2<...<kqn<n=kqn+1.
Total number (q,,) as well as locations (k1, . . . , k4,,) Of change-points are unknown
and to be estimated.

Errors e, ..., e, ~ (0, 07).



‘multiple’ change-point estimation

Considerably more challenging than single change-point estimation.

1. Estimation of the total number of the change-points itself is difficult.

— Information criterion: Yao (1988), Lee (1995), Serbinowska (1996), Liu et al. (1997), Bai
(1998), Kithn (2001), Ninomiya (2005), Pan & Chen (2006), Zhang & Siegmund (2007), Hannart
& Naveau (2012), Fryzlewicz (2014). ..

— Typically requires the maximum number of change-points as an input.
2. Often, computing change-point detectors over an interval = fitting a stump function.

— May lead to undesirable consequences when the interval is ‘contaminated’ by
more than one change-points.
— Reflected in stronger assumption on the size of change-points for their detection.



WILD BINARY SEGMENTATION 2249

F1G. 1. True function fr, t =1,..., T =300 (thick black), observed X; (thin black), |}~(1]’ 300
plotted for b=1, ...,299 (blue), and |5(l1701,200| plotted for b =101, ..., 199 (red).

(Fryzlewicz, 2014))



Localised approaches to change-point estimation

Aim: isolate each change-point in an interval sufficiently large for its detection.

e Wild Binary Segmentation (Fryzlewicz, 2014): draws a large number of intervals
randomly.
— With high probability, for each k;, there exists at least one interval which con-
tains k; only and is sufficiently large, so that its presence is detected as well as
its location being accurately estimated, forall j = 1, ..., gn.

e MOSUM procedure (Eichinger & Kirch, 2017): contrasts the behaviour of left and right
summation windows using a moving window.
— With bandwidth G satisfying min;(k,+1 — k;) > 2G, summation windows con-
tain at most a single change-point.
— Multiscale extension with multiple bandwidths.



mix test signal = large jumps over short intervals + small jumps over long intervals.
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Conflicting change-point estimators

CUSUM statistics over random intervals along with change-point candidates (‘x’).
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WBS resolves this issue by adopting a binary segmentation algorithm, which selects
the interval with the largest CUSUM statistic and segments the data in an iterative
manner.

— NOT (narrowest-over-threshold, Baranowski et al., 2016) selects the narrowest interval
among those with CUSUM statistics exceeding a threshold.

— Final model selection depends on the choice of threshold, or the application of an
information criterion to a sequence of nested models indexed by the number of
change-points.



Conflicting change-point estimators

Multiscale MOSUM procedure with bandwidths € {10, 30, 60}.
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Messer et al. (2014) proposed ‘bottom-up’ merging of change-point candidates from
the multiscale MOSUM procedure, starting from those detected with the smallest
bandwidth.

— Cannot be generalised to asymmetric (left summation window # right summation
window) MOSUM procedure.

— Cannot remove some spurious change-point estimates.



Localised pruning

A generic procedure applicable to change-point candidates returned by a class of
change-point methodologies based on the principle of isolating each change-point
for its estimation.

‘Ingredients’

e B0l the pool of all change-point estimates.
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Epom from multiscale and asymmetric extension of MOSUM procedure with ' H = {10, 20, 40, 60, 80}.
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Localised pruning

A generic procedure applicable to change-point candidates returned by a class of
change-point methodologies based on the principle of isolating each change-point
for its estimation.

‘Ingredients’

e Byool, the pool of all change-point estimates.
e Schwarz criterion (Schwarz, 1978): for A C gpooh

+&(n) - |A].

SC(A) = glog{w}
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B,.o + SC = exhaustive search?

gpom may be pruned down via an exhaustive search using SC evaluated at every
possible combination of estimates A C Bpool.

e Computationally expensive!
— For this example, in total 177 change-point estimates (= | Bpool|) While g,, = 13!

— 2177 combinations!
CP
[1,] 11
[2,] 21
[(3,] 41
[176,] 491

[177,]1 301

13



B,.o + SC = exhaustive search?

gpom may be pruned down via an exhaustive search using SC evaluated at every
possible combination of estimates A C Bpool.

e Computationally expensive!
e Ignores that each k is detected within a local interval.
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= Motivates a localised pruning approach.
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Localised pruning

A generic procedure applicable to change-point candidates returned by a class of
change-point methodologies based on the principle of isolating each change-point
for its estimation.

‘Ingredients’

e Byool, the pool of all change-point estimates.
e Schwarz criterion (Schwarz, 1978): for A C gpooh

SC(A) = glog {%W} L e(n) - Al

e Such change-point estimation methods attach extra information to their change-
point estimates, namely the interval within which each candidate is estimated.
— For each k € By, its detection interval Z(k) = [k — G; + 1, k + G,], with
some G; = Gy(k) and G, = G..(k).
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Localised pruning: step-by-step

Step 0: assign the set of candidates P = §poo| (for future consideration), and the set
of currently ‘alive’ estimates C = Bpool (SUrvived pruning & for future consideration).

Step 1: identify E* € P with {largest jump size, smallest p-value}.

> sort CP according to jump size

CP G 1 G r p-value Jump
(1,1 41 20 10 9.820958e-08 3.4338066
(2,1 41 10 10 9.023790e-06 3.2922756
[3,]1] 61 20 10 2.813026e-07 3.2901970
(4,7 21 10 10 1.049419e-05 3.2684876
[5,1 41 20 20 4.971903e-08 3.0141912
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We can ‘sort’ the change-point candidates according to

e (scaled) jump size

111 k 1E+Gr
Tk === 2. Xi—z > X
lt:E—G[+1 t=k+1

e p-value = p(E) from the (asymptotic) distribution of the test statistic under Hy.
T k with small p(k) / large 7 (k) is preferable.

> sort CP according to Jjump size

CP G_1 G r p-value Jump
(1,1 41 20 10 9.820958e-08 3.4338066
(2,1 41 10 10 9.023790e-06 3.2922756
[3,] ©61 20 10 2.813026e-07 3.2901970
(4,7 21 10 10 1.049419e-05 3.2684876
[5,1 41 20 20 4.971903e-08 3.0141912



Step 2: select candidates D conflicting with & as

k < k* and k* ~k < min{G,;(k* "), Gy (k)} or
k> k*and k — k* < min{G.(k*), Gi(k)},

such that D = {ki, ..., k,}.
7 Detection intervals of k contain k* and vice versa.
Step 3: identify a local environment containing D, as

kL — largest estimate in C to the left of kl,
kr = smallest estimate in C to the right of k.

18



Steps 2-3.
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zi, t € [kr + 1, kg] = [22,60] with k* = 41 and D = {36, 41, 51}.

CP G_1 G r p-value Jjump
[1, ] 41 20 10 9.820958e-08 3.43380066
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Step 4: Letting Z = [EL — 1,ER], calculate SC at each subset of the conflicting
candidates, A C D:

SC(A,T,C) = (n/2) log { RSS(A U

)} L E(n) - (A + ¢\ 7)),

where A = 0, {36}, {41}, {51}, {36, 41}, {36,51}, {41,51}, {36,41, 51}.
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SC takes the whole X;, ¢t = 1, ..., n into account.

Using thus-defined SC, we perform an adaptively chosen subset of exhaustive
search over all possible subsets of By Using the information criterion.

Does not require maximum number of change-points as an input.
Due to how we define the local environment 7, the computation is facilitated as we
e

k .
J+1
only need to compute and store Zt:@H X and Zt:ij e

J
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Step 4 (cont’d): look for A C D such that

(a) adding further candidates to A monotonically increases SC;
(b) removing any single estimate from A increases SC;
(c) |A| = min{|A|: A C D satisfies (a)—(b)}.
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Step 4 (cont’d): look for A C D such that

(a) adding further candidates to A monotonically increases SC;
(b) removing any single estimate from A increases SC;
(c) |A| = min{|A|: A C D satisfies (a)—(b)}.
+ Such A does not always coincides with arg min 4cp SC(A,Z,C).
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1 Efficient computation via bitwise iteration.



Step 5: add A to B, remove A from P as well as thosef € D whose detection
intervals are contained in [k; + 1, kgr|, update C < P U B and proceed to the next
iteration.

Repeat the steps 1-5 until P is empty.

Steps 1-3: identify k* € P with {largest j(E*), smallest p(E*)}, its neighbours D
and local environment Z = [kr + 1, kg].
Step 4: Look for a subset A C D so that
(a) adding further candidates to A monotonically increases SC;
(b) removing any single estimate from A increases SC;
(c) |A] = min{|A| : A C D satisfies (a)—(b)}.
Step 5: update B, P and C.
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Next iteration
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1180

Next iteration (cont’d)

(84, 87, 89, 91, 98, 100, 108
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Multiscale MOSUM procedure
with localised pruning
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MOSUM procedure

With G = (G, G,) as the bandwidth, MOSUM detector:

GG,
Ten(@) = G+ G

fork=1,...,n— 1.

k k+Gp

> Xi-go > X

t=k—G+1 " t=k+1

1
G

28



Asymptotic distribution under H

Under Hy: ¢, = 0 (no change-points), we have T,,(G) = max,o T} ,(G) satisfy
a(n,G)T,, —b(n,G) —4 T,
where I" follows a Gumbel extreme value distribution.

(Eichinger & Kirch, 2017; Meier, Kirch & Cho, 2018)
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Multiple change-point estimation

______________________________________________________________________
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Multiple change-point estimation

"""""""""""""""""""""""""""""""""""""""""""""""""""

0 20 40 60 80 100 120 140

Locate multiple change-points as Ef’, j=1,...,q9c, Where

(a) 8_1TE§;,n(G) > D, (G, «) (from the asymptotic distribution under Hy), and

(b) 7 'T.c  (G) is the local maximum over EJG —nG; < k < EJG + nG, for some
j )
n € (0, 1].

For each estimate k¢, we have Z(k%) = [k$ — G, +1,k§ + G|, p(kF) and T (k%).
— input to the localised pruning.
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Theoretical consistency for
MOSUM procedure

32



Conditions

For X; = f; + €, assume

(i) Invariance principle: for a standard Wiener process {W (k) : 1 < k < n} and

An = o(v/n),
maxi<p<n | Sor_ & — TW (k)| = O(\,) as.

with 72 = o + 3, _, Cov(eo, €n).
(i) For some fixed v > 2 and Cy > 0, it holds forany —oco < I < r < oo,

E|> e’ < Co(r —141)72

33



Consistency of single-bandwidth MOSUM procedure

Letd; = | f; — fj—1| (jump size) and suppose

(I) minj (]fj+1 — lfj) > QG,
(i) min; d?G > cqi/'y log n for some ¢ > 0,
(i) n/G — oo and A2 log n/G — 0.

Then, estimated change-points B(G) = {Ef, j=1,...,q¢c} satisfy

p {@\G — g |k — K9] < cog?"d; P log nVj=1,.. .,qn} 1
for some fixed ¢y > O.

With fixed d; and q,,, we have minimax optimality in estimating k&, up to a logarithmic
J J
factor.

34



Theoretical consistency for
multiscale MOSUM procedure
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Consistency of multiscale MOSUM procedure

For a set of bandwidths 7, assume that for each k;, there exists GG, (;) € H such that

() min(k; — kj_1, kjp1 — kj) > 2Gy()),
(i) d?Gh@ > cqi/’y log n.
(i") n/(max; Gy(j)) — oo and A2 log n/(min; Gp;)) — O.

T If there are multiple such bandwidths for k;, let G, (;) be their minimum.

Then, pooling all change-point estimates Bpoo = UgenB(G), we have

PJ min |k; — 74\] < Coqz/vdj_Q log nforalj=1,...,q, p — 1.
kGBpOO|

— J at least one ‘valid’ estimate for each k; in Bpoo.

36



Theoretical consistency for

multiscale MOSUM procedure
with localised pruning
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Choice of penalty in SC

Closely related to the behaviour of maxi<j<,<n(r — 1 + 1) 72| S27_, &4l

o If g, i.i.d. with mgf, set £(n) = log1+5 n for some small § > 0 (Shao, 1995).

2
o IfE|e/]*T™ < oo forsome A > 0, set&(n) = n3+51° (Mikosch & Ratkauskas, 2010).

38



Consistency of multiscale MOSUM procedure with
localised pruning

(i) d2Ghy) > c&(n).
Result 1. For any given interval [s, e] and ¢ € (0, 1], define

Bs,e — {kjs+j S [37 6]; min(kjs-Fj — §,€ — kjs-Fj) Z éGh(js—l-j)}

with gs. = |Bs.|. Then, exhaustive search in Step 4 yields B, . = {Ejsﬂ-, Jj =

1,...,Qs.} that consistently estimates B;.: g5 = gs.. and
|kjs—|-j — kjs+j| < Coqi/ydj_j—l—j log nforallj =1,..., ds.e

with probability tending to one.

Result 2. Repeated application of Steps 1-5 yields B = {El, . ,Ea} satisfying

P{(JA: ani |kj — kil < coq;"d; " log nforallj = 1,.. "q”} - L

39



Simulation study

Compare the multiscale MOSUM procedure with localised pruning (‘CK’) against
the bottom-up merging approach (Messer et al. 2014), Pruned Exact Linear Time (PELT,
Killick et al. 2012), Wild Binary Segmentation combined with BIC (WBS, Fryzlewicz 2014),
pruned dynamic programming algorithm (S3IB, Rigaill 2010), cumSeg (Muggeo & Adelfio
2010), Tail-Greedy Unbalanced Haar (TGUH, Fryzlewicz 2018+), its hybrid with adaptive
WBS (hybrid), and multiscale segmentation method (FDRSeg, Li et al. 2016).

Choice of parameters: H = {10, 20, 40, 60,80, 100} and o = 0.2.

Report the true positive rate (|l§ NB|/q.), false positive rate (|l§ NB°|/q), Adjusted
Rand Index (ARI) of the estimated segmentation, mean squared error (MSE) of f
Hausdorff distance between B and 13, and weighted average of trimmed distances
Otrim = (an Cl2)_1 an d2 - 5trim,j where

Jj=1"3 Jj=1"

kiv1i—k; ki — ki -
5trimj p— ( I+l J AN J i1 /A min ‘kj/ - kﬂ)
’ 2 2 1<5'<q

averaged over 1000 replications.
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blocks: n = 2048, ¢, = 11, Gaussian noise, £(n) = log' %' n.

40

20
1

1000

1500

2000

method TPR | FPR | ARI MSE dp Serim
CK 096 | 002 | 0973 | 4975 | 38452 | 339.349
bottom.up | 0.959 | 0.288 | 0.864 | 5.94 | 144.947 | 353.589
WBS 0.954 | 0008 | 0979 | 5105 | 29785 | 374.093
PELT 0.876 | 0.001 | 096 | 6355 | 58619 | 582.304
S3IB 0971 | 002 | 0979 | 4749 | 30868 | 312.663
cumSeg 0.775 | 0.002 | 0914 | 12914 | 83.402 | 1706.121
TGUH 0.947 | 0025 | 0965 | 6519 | 42168 | 499.076
hybrid 0.945 | 0.027 | 0971 | 5342 | 45131 | 370.507
FDRSeg | 0.973 | 0.081 | 0956 | 6.033 | 67.488 | 450.989
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fms: n = 497, ¢, = 6, Gaussian noise, &£(n) = log""

15

1.0

0.5

-1.0 -05

I
Aty I
| ..m'd‘mvwl T |t m l.lu.d i)
sl "'w ; ‘“ﬂll'w T T
| | | |
1(‘)0 2(;0 3(‘)0 4(;0 5(;0
method TPR | FPR | AR MSE dp Srrinm
CK 0.996 | 0.037 | 0.949 | 4315 | 16.215 | 0.155
pottom.up | 0.974 | 0.301 | 0.817 | 6.355 | 60.737 | 0.351
WBS 0.996 | 0.006 | 0.968 | 3.675 | 7.477 | 0.138
PELT 0.927 | 0.001 | 0953 | 5012 | 1424 | 0.431
S3IB 1 0.097 | 0.942 | 4777 | 27.953 | 0.104
cumSeg 0.731 0.011 0.916 14.234 30.087 1.961
TGUH 0.996 | 0.039 | 0.945 | 4765 | 15782 | 0.159
hybrid 0.997 | 0.037 | 0.954 | 3916 | 14.705 | 0.127
FDRSeg 0.999 | 0.099 | 0.941 | 13.165 | 20.812 | 1.671
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mix: n = 560, g, = 13, Gaussian noise, ¢£(n) = log™"!

5 10 15

0

-20 -15 -10 -5

u””‘ 1 ‘ l l
‘ M l | [ il VLA
y ” ” [ II'”I’I k \l‘ unir | l ‘||1llm”'l”‘”w h“ “ 1
‘ 1 1 L 1”" 'u','” y "[ IM ’ IR 'M(
I L S L R
é 1&0 280 3$o 480 5$o
method TPR FPR ARI MSE dH 5trim
CK 0.941 0.014 0.792 4,145 57.094 30.099
bottom.up 0.961 0.06 0.823 4.298 43.313 32.504
WBS 0.91 0.008 0.733 4.377 80.408 33.351
PELT 0.772 0.002 0.462 6.135 184.846 46.501
S3IB 0.961 0.073 0.817 4.771 43.354 31.722
cumSeg 0.315 0 0.255 25.587 101.915 796.096
TGUH 0.9 0.026 0.697 5.474 88.063 46.775
hybrid 0.905 0.02 0.723 4.53 83.754 33.750
FDRSeg 0.936 0.086 0.756 8.164 58.865 136.397
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teethl0: n = 140, ¢, = 13, Gaussian noise, ¢£(n) = log" %' n.

00 05 10 15 20

-0.5

I

80

method TPR | FPR | ARI MSE dpy Serim
CK 0.968 | 0.001 | 0932 | 2389 | 3591 | 0.298
bottom.up | 0.967 | 0.004 | 0.942 | 2584 | 4524 | 0.282
WBS 0943 | 002 | 0865 | 4277 | 4628 | 0.641
PELT 0.378 | 0.007 | 0274 | 13.16 | 43.907 | 3.256
S3IB 0.997 | 0.099 | 0904 | 4014 | 3882 | 0.387
cumSeg 0.001 0 0 18.382 | 1.881 | 4.994
TGUH 0.961 | 0017 | 0866 | 439 | 5.161 | 0.634
hybrid 0.964 | 0.014 | 0886 | 3.917 | 4644 | 0.543
FDRSeg | 0.964 | 0.054 | 0743 | 7.986 | 5714 | 1.280
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stairsl10: n = 140, ¢, = 13, Gaussian noise, £(n) = log' %' n.

15
1

10

method TPR | FPR | ARl | MSE | dy | Ouim
CK 0.998 | 0.003 | 0.977 | 2.184 | 1216 | 0.113
bottom.up | 0.995 | 0.006 | 0.968 | 2.559 | 1.985 | 0.152
WBS 1 0.036 | 0.958 | 2.937 | 2.207 | 0.168
PELT 0.992 0 0.965 | 2.715 | 1.882 | 0.179
S3IB 1 0.089 | 0953 | 3.078 | 3.245 | 0.135
cumSeg 0.986 | 0.006 | 0.877 | 7.351 | 3.253 | 0.646
TGUH 1 0.009 | 0962 | 2873 | 1575 | 0.179
hybrid 0.999 | 0.011 | 0956 | 3.221 | 1.944 | 0.214
FDRSeg 1 0051 | 079 | 1152 | 2.739 | 1.020
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¢,-error between B and B conditional on our method (‘CK’) and the competitor cor-
rectly estimating all ¢,, change-points.

model WBS S3IB cumSeg TGUH hybrid FDRSeg
blocks 4 CK 2.039 2.098 NA 2.038 2.03 2.093
competitor 2.14 2.061 NA 3.106 2.153 2.555
- all detection 0.401 0.413 0 0.328 0.314 0.326
fms 4 CK 1.188 1.143 1.17 1.183 1.18 1.188
competitor 1.1183 1.023 1.641 1.591 1.116 1.744
- all detection 0.81 0.526 0.155 0.725 0.73 0.688
mix 4 CK 1.784 1.843 NA 1.8 1.748 1.671
competitor 1.781 1.805 NA 2.319 1.742 2.303
- all detection 0.22 0.159 0 0.159 0.162 0.129
teethl0 2 CK 0.127 0.132 NA 0.126 0.126 0.133
competitor 0.329 0.315 NA 0.404 0.33 1.085
- all detection 0.499 0.218 0 0.5 0.512 0.413
stairsl0 I CK 0.1 0.099 0.102 0.101 0.101 0.103
competitor 0.157 0.124 0.559 0.167 0.195 1.020
- all detection 0.578 0.298 0.729 0.837 0.819 0.765
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Heavy-tail

t5 noise, £(n) = log'! n (light) and ¢(n) = n?/>! (heavy).

model method penalty TPR FPR ARI MSE d g Strim
blocks CK light 0.943 0.005 0.978 5.113 35.346 346.064
heavy 0.768 0 0.923 11.484 78.559 1068.298
bottom.up - 0.979 0.354 0.822 6.143 184.263 321.292
cumSeg - 0.773 0.003 0.913 13.428 85.287 1737.013
fms CK light 0.987 0.013 0.964 4.281 10.196 0.205
heavy 0.951 0.002 0.938 5.483 17.847 0.313
bottom.up - 0.988 0.38 0.757 6.76 88.055 0.283
cumSeg - 0.737 0.013 0.915 14.94 30.354 1.889
mix CK light 0.914 0.005 0.747 4.092 75.677 34.143
heavy 0.855 0.001 0.634 4.72 118.595 39.439
bottom.up - 0.983 0.099 0.851 4.016 33.257 33.985
cumSeg - 0.32 0 0.258 24.689 104.038 788.816
teethl0 CK light 0.92 0.001 0.875 3.154 6.74 0.522
heavy 0.894 0.001 0.847 3.534 8.572 0.642
bottom.up - 0.981 0.004 0.953 2.227 3.13 0.226
cumSeg - 0.001 0 0 18.516 1.92 4.994
stairsl0 CK light 0.995 0.002 0.973 2.328 1.639 0.135
heavy 0.994 0.001 0.973 2.338 1.66 0.137
bottom.up - 0.991 0.004 0.962 2.864 2.434 0.189
cumSeg - 0.982 0.007 0.878 7.513 3.312 0.645

47



Scalability

Proposed methodology is less affected by increasing n due to its localised approach.

Dense: repeat the five test signals until n > 2 x 10*.
Sparse: embed the test signals in a sequence of n = 2 x 10* at t = 500.
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Dense blocks: n = 20480, ¢, = 110, Gaussian noise, &£(n) = log™ "' n.

10 20 30

-10 O

-30
1

0 1000 2000 3000 4000 5000
method TPR | FPR | ARl | MSE dr Sim | Speed
CK 0928 | 0.004 | 098 | 5002 | 87.97 | 2.364 | 1.901
bottom.up | 0.919 | 0.207 | 0.906 | 6.013 | 20563 | 258 | 0.225
whs . c 0.854 | 0.029 | 0944 | 7.627 | 171.92 | 4.288 | 32.416
wbs.sbic | 0.927 | 0.035 | 0.959 | 5.602 | 16582 | 2576 | 85.722
PELT 0.808 0 0.954 | 8107 | 107.747 | 6.451 | 0.017
TGUH 092 | 0006 | 0974 | 6.269 | 9824 | 3.259 | 1.028
hybrid 0.895 | 0.033 | 0955 | 6282 | 1652 | 2989 | 22.742




Sparse mix: n = 2 x 10%, g, = 13, Gaussian noise, £(n) = log' "' n.

10
1

2000

3000

4000

5000

method TPR | FPR | ARI MSE dr Swim | _Speed
CK 089 | 0.017 | 0871 | 481 | 1203516 | 0.781 | 0373
bottom.up | 0.909 | 0.353 | 0.072 | 5829 | 15764.76 | 0785 | 0.190
whs . c 0.727 | 0.002 | 0912 | 10.494 | 223.741 2.414 | 30.748
wbs.sbic | 0.834 | 0.008 | 0907 | 6432 | 519.809 | 1.232 | 44.235
PELT 0.668 | 0.001 | 0.846 | 9.209 | 248.531 2234 | 0.025
TGUH 0538 | NA | 0703 | 46.868 | 369.404 | 12.014 | 1.002
hybrid 0537 | NA | 0712 | 48.392 | 499.946 | 12.638 | 24.926
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Conclusions

Computationally efficient approach to pruning down (potentially) a large number of
conflicting change-point estimates.

Scalable to increasing number of observations and change-points.

Achieves consistency in estimating both the total number and locations of change-
points.

Applicable in combination with any method that provides additional information
about the local environment in which each change-point is obtained.

Extendable to problems admitting the minimisation of cost + penalty on the model
complexity.
R package mosum available on CRAN.
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